If you want to cite the prediction models, please cite the following papers:
Enzyme-Substrate Pair Prediction:
Kroll, A., Ranjan, S., Engqvist, M. K., & Lercher, M. J. (2023).
A general model to predict small molecule substrates of enzymes based on machine and deep learning.
Nature Communications, 14(1), 2787.
DOI: 10.1038/s41467-023-38347-2
Kroll, A., Ranjan, S., & Lercher, M. J. (2024).
A multimodal Transformer Network for protein-small molecule interactions enhances predictions of kinase inhibition and enzyme-substrate relationships.
PLOS Computational Biology, 20(5), e1012100.
DOI: 10.1371/journal.pcbi.1012100
Turnover Number kcat Prediction:
Kroll, A., Rousset, Y., Hu, X. P., Liebrand, N. A., & Lercher, M. J. (2023).
Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning.
Nature Communications, 14(1), 4139.
DOI: 10.1038/s41467-023-39840-4
Michaelis Constant KM Prediction:
Kroll, A., Engqvist, M. K., Heckmann, D., & Lercher, M. J. (2021).
Deep learning allows genome-scale prediction of Michaelis constants from structural features.
PLoS Biology, 19(10), e3001402.
DOI: 10.1371/journal.pbio.3001402
Transporter-Substrate Pair Prediction:
Kroll, A., Niebuhr, N., Butler, G., & Lercher, M. J. (2024).
SPOT: A machine learning model that predicts specific substrates for transport proteins.
PLoS Biology, 22(9), e3002807.
DOI: 10.1371/journal.pbio.3002807
This website uses only essential cookies that are necessary for the website to function properly. These cookies are used for basic website functionality and security features. They do not collect any personal information.